Low-power X-tal driver with enable and internal resistor Rev. 02 — 7 August 2008 Product date

Product data sheet

1. **General description**

The 74AUP1Z125 combines the functions of the 74AUP1GU04 and 74AUP1G125 with enable circuitry and an internal bias resistor to provide a device optimized for use in crystal oscillator applications.

When not in use the EN input can be driven HIGH, pulling up the X1 input and putting the device in a low power disable mode. Schmitt trigger action at the EN input makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using I_{OFF} at output Y. The I_{OFF} circuitry disables the output Y, preventing the damaging backflow current through the device when it is powered down.

The integration of the two devices into the 74AUP1Z125 produces the benefits of a compact footprint, lower power dissipation and stable operation over a wide range of frequency and temperature.

Features 2.

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- ESD protection:
 - HBM JESD22-A114E Class 3A exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101C exceeds 1000 V
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation at output Y
- Multiple package options
- Specified from –40 °C to +85 °C and –40 °C to +125 °C

Low-power X-tal driver with enable and internal resistor

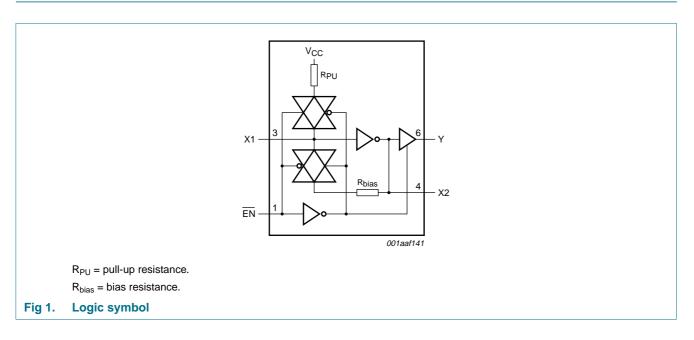
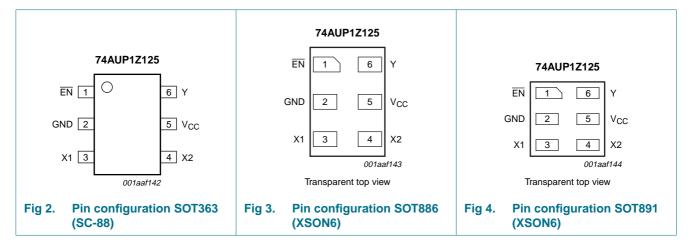

3. Ordering information

Table 1. Orderin	g information								
Type number	Package	Package							
	Temperature range	Name	Description	Version					
74AUP1Z125GW	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363					
74AUP1Z125GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886					
74AUP1Z125GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm	SOT891					

4. Marking

Table 2. Marking	
Type number	Marking code
74AUP1Z125GW	55
74AUP1Z125GM	55
74AUP1Z125GF	55


5. Functional diagram

Low-power X-tal driver with enable and internal resistor

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
EN	1	enable input (active LOW)
GND	2	ground (0 V)
X1	3	data input
X2	4	unbuffered output
V _{CC}	5	supply voltage
Y	6	data output

7. Functional description

Table 4.Function table^[1]

Input Carlor Car		Output		
EN	X1	X2	Y	
L	L	Н	Н	
L	Н	L	L	
Н	L	Н	Z	
Н	Н	L	Z	

[1] H = HIGH voltage level;

L = LOW voltage level;

Z = high-impedance OFF-state.

Low-power X-tal driver with enable and internal resistor

Limiting values 8.

Table 5. **Limiting values**

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol Parameter Conditions Min Max Unit V_{CC} supply voltage -0.5 +4.6 V I_{IK} input clamping current $V_1 < 0$ V -50 - mA V_1 input voltage $V_1 < 0$ V -50 +4.6 V V_1 input voltage $V_1 < 0$ V -50 - mA V_1 output clamping current $V_0 < 0$ V -50 - mA I_{OK} output clamping current $V_0 < 0$ V -50 - mA V_0 output voltage Active mode and Power-down mode 11 -0.5 +4.6 V I_0 output current $V_0 = 0$ V to V_{CC} - ±20 mA I_{CC} supply current V_0 = 0 V to V_{CC} - 50 mA I_{GND} ground current - -50 - mA I_{SND} storage temperature $T_{amb} = -40$ °C to $+125$ °C P_2 - 250 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th>						-
IncludeInput clamping current $V_I < 0 V$ -50 $-$ mA V_I input voltage $V_I < 0 V$ -50 $-$ mA V_0 output clamping current $V_0 < 0 V$ -50 $-$ mA V_0 output voltageActive mode and Power-down mode 11 -0.5 $+4.6$ V I_0 output voltageActive mode and Power-down mode 11 -0.5 $+4.6$ V I_0 output current $V_0 = 0 V$ to V_{CC} $ \pm 20$ mA I_{CC} supply current -50 $ 50$ mA I_{GND} ground current -50 $-$ mA T_{stg} storage temperature -65 $+150$ $^{\circ}C$	Symbol	Parameter	Conditions	Min	Max	Unit
V_1 input voltage 11 -0.5 $+4.6$ V I_{OK} output clamping current $V_O < 0 V$ -50 $ mA$ V_O output voltageActive mode and Power-down mode 11 -0.5 $+4.6$ V I_O output current $V_O = 0 V$ to V_{CC} $ \pm 20$ mA I_{CC} supply current $ 50$ mA I_{GND} ground current -50 $ mA$ T_{stg} storage temperature -65 $+150$ $^{\circ}C$	V _{CC}	supply voltage		-0.5	+4.6	V
IOKoutput clamping current $V_O < 0$ V -50 $-$ mA V_O output voltageActive mode and Power-down mode[1] -0.5 $+4.6$ V I_O output current $V_O = 0$ V to V_{CC} $ \pm 20$ mA I_{CC} supply current $ 50$ mA I_{GND} ground current -50 $-$ mA T_{stg} storage temperature -65 $+150$ $^{\circ}C$	I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
V_O output voltageActive mode and Power-down mode[1] -0.5+4.6V I_O output current $V_O = 0 V$ to V_{CC} - ± 20 mA I_{CC} supply current-50mA I_{GND} ground current-50-mA T_{stg} storage temperature-65+150°C	VI	input voltage		<u>[1]</u> –0.5	+4.6	V
I_O output current $V_O = 0 V$ to V_{CC} - ± 20 mA I_{CC} supply current-50mA I_{GND} ground current-50-mA T_{stg} storage temperature-65+150°C	I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
ICCsupply current-50mAIGNDground current-50-mAT _{stg} storage temperature-65+150°C	Vo	output voltage	Active mode and Power-down mode	<u>[1]</u> –0.5	+4.6	V
I_{GND} ground current-50-mA T_{stg} storage temperature-65+150°C	lo	output current	$V_{O} = 0 V$ to V_{CC}	-	±20	mA
T_{stg} storage temperature -65 +150 °C	I _{CC}	supply current		-	50	mA
	I _{GND}	ground current		-50	-	mA
P_{tot} total power dissipation $T_{amb} = -40 \ ^{\circ}C$ to $+125 \ ^{\circ}C$ [2] - 250 mW	T _{stg}	storage temperature		-65	+150	°C
	P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$	[2] _	250	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

For SC-88 packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K. [2] For XSON6 packages: above 45 °C the value of P_{tot} derates linearly with 2.4 mW/K.

Recommended operating conditions 9.

Table 6.	Recommended operating conditi	ons			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage		0	V_{CC}	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 0.8 V to 3.6 V	-	200	ns/V

74AUP1Z125_2

Product data sheet

Low-power X-tal driver with enable and internal resistor

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					
/ _{IH}	HIGH-level input voltage	X1 input				
		V_{CC} = 0.8 V to 3.6 V	$0.75 \times V_{CC}$	-	-	V
		EN input				
		$V_{CC} = 0.8 V$	$0.70 \times V_{CC}$	-	-	V
		$V_{CC} = 0.9 V$ to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		$V_{CC} = 3.0 V \text{ to } 3.6 V$	2.0	-	-	V
′ı∟	LOW-level input voltage	X1 input				
		$V_{CC} = 0.8 V \text{ to } 3.6 V$	-	-	$0.25 \times V_{CC}$	V
		EN input				
		$V_{CC} = 0.8 V$	-	-	$0.30 \times V_{CC}$	V
		$V_{CC} = 0.9 V$ to 1.95 V	-	-	$0.35 imes V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	V
V _{OH}	HIGH-level output voltage	Y output; V _I at X1 input = V_{IH} or V_{IL}				
		I_O = -20 μ A; V_{CC} = 0.8 V to 3.6 V	$V_{CC} - 0.1$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.75 imes V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.11	-	-	V
		I _O = −1.9 mA; V _{CC} = 1.65 V	1.32	-	-	V
		$I_0 = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	2.05	-	-	V
		$I_0 = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_0 = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6	-	-	V
		X2 output; $V_1 = GND$ or V_{CC}				
		$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 0.8 \ V \ \text{to} \ 3.6 \ V$	V _{CC} – 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	$0.75 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.11	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.32	-	-	V
		$I_0 = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	2.05	-	-	V
		$I_0 = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_0 = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6	-	-	V

74AUP1Z125

Low-power X-tal driver with enable and internal resistor

Table 7. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage	Y output; V _I at X1 input = V_{IH} or V_{IL}				
		I_{O} = 20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	-	-	0.1	V
		$I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.3 \times V_{CC}$	V
		$I_0 = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.31	V
		$I_{O} = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.31	V
		$I_0 = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.31	V
		$I_0 = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.44	V
		$I_0 = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.31	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.44	V
		X2 output; $V_1 = GND$ or V_{CC}				
		I_{O} = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 imes V_{CC}$	V
		$I_0 = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		$I_0 = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.31	V
		$I_0 = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.44	V
		$I_0 = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.31	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.44	V
I	input leakage current	X1 input				
		$V_I = \overline{EN} = V_{CC}; V_{CC} = 0 V \text{ to } 3.6 V$	-	-	±0.1	μΑ
		EN input				
		$V_1 = GND \text{ to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.1	μA
pu	pull-up current	X1 input; EN = V _{CC}				
		$V_{I} = GND; V_{CC} = 0.8 V \text{ to } 3.6 V$	-	-	15	μΑ
OZ	OFF-state output current	Y output; $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 3.6 V; $\overline{EN} = V_{CC}$	-	-	±0.1	μA
OFF	power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V; } V_{CC} = 0 \text{ V}$	<u>[1]</u> _	-	±0.2	μA
∆I _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	<u>[1]</u> -	-	±0.2	μA
сс	supply current	$V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	75	μΑ
lcc	additional supply current	EN input				
		$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	-	-	40	μΑ
à	input capacitance	X1 input				
		$V_{CC} = 0 V$ to 3.6 V; $V_I = GND$ or V_{CC}	-	1.3	-	pF
		EN input				
		$V_{CC} = 0 V \text{ to } 3.6 V;$ $V_I = GND \text{ or } V_{CC}$	-	0.8	-	pF

74AUP1Z125

Low-power X-tal driver with enable and internal resistor

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Co	output capacitance	X2 output				
		$V_O = GND; V_{CC} = 0 V$	-	1.5	-	pF
		Y output				
		$V_O = GND; V_{CC} = 0 V$	-	1.7	-	pF
9 _{fs}	forward transconductance	see Figure 10 and Figure 11				
		$V_{CC} = 0.8 V$	-	-	-	mA/V
		$V_{CC} = 1.1 \text{ V} \text{ to } 1.3 \text{ V}$	0.2	-	9.9	mA/V
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	3.9	-	17.7	mA/V
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	7.9	-	24.3	mA/V
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	18	-	30.7	mA/V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	20.5	-	32.4	mA/V
R _{bias}	bias resistance	$\overline{EN} = GND; f_i = 0 Hz; V_1 = 0 V or V_{CC}; See Figure 5; for frequency behavior see Figure 6$	1.08	1.62	3.08	MΩ
T _{amb} = -	40 °C to +85 °C					
VIH	HIGH-level input voltage	X1 input				
		$V_{CC} = 0.8 V \text{ to } 3.6 V$	$0.75 \times V_{CC}$	-	-	V
		EN input				
		$V_{CC} = 0.8 V$	$0.70\times V_{CC}$	-	-	V
		$V_{CC} = 0.9 V$ to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	1.6	-	-	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	-	-	V
V _{IL}	LOW-level input voltage	X1 input				
		$V_{CC} = 0.8 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	$0.25 \times V_{CC}$	V
		EN input				
		$V_{CC} = 0.8 V$	-	-	$0.30 \times V_{CC}$	V
		$V_{CC} = 0.9 V$ to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	V

Static characteristics ... continued Table 7.

74AUP1Z125

Low-power X-tal driver with enable and internal resistor

Table 7. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	Y output; V _I at X1 input = V_{IH} or V_{IL}				
		I_{O} = –20 $\mu A; V_{CC}$ = 0.8 V to 3.6 V	V _{CC} – 0.1	-	-	V
		$I_0 = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.7 \times V_{CC}$	-	-	V
		$I_{\rm O} = -1.7 \text{ mA}; V_{\rm CC} = 1.4 \text{ V}$ 1.03	1.03	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.30	-	-	V
		$I_0 = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.97	-	-	V
		$I_0 = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.85	-	-	V
		$I_0 = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.67	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.55	-	-	V
		X2 output; $V_I = GND$ or V_{CC}				
		I_{O} = –20 $\mu A; V_{CC}$ = 0.8 V to 3.6 V	V _{CC} – 0.1	-	-	V
		$I_0 = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.7 \times V_{CC}$	-	-	V
		$I_0 = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.03	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.30	-	-	V
		$I_0 = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.97	-	-	V
		$I_0 = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.85	-	-	V
		$I_0 = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.67	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.55	-	-	V
/ _{OL}	LOW-level output voltage	Y output; V _I at X1 input = V_{IH} or V_{IL}				
		I_{O} = 20 $\mu A;$ V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		$I_0 = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.3 \times V_{\text{CC}}$	V
		$I_0 = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.37	V
		$I_0 = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.35	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.33	V
		$I_0 = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_0 = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.33	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.45	V
		X2 output; $V_I = GND$ or V_{CC}				
		I_{O} = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{\text{CC}}$	V
		$I_0 = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.37	V
		I_{O} = 1.9 mA; V_{CC} = 1.65 V	-	-	0.35	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.33	V
		$I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.33	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.45	V

74AUP1Z125

Low-power X-tal driver with enable and internal resistor

Table 7. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
l _l	input leakage current	X1 input				
		$V_I = \overline{EN} = V_{CC}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.5	μA
		EN input				
		V _I = GND to 3.6 V; V _{CC} = 0 V to 3.6 V	-	-	±0.5	μΑ
l _{pu}	pull-up current	X1 input; $\overline{EN} = V_{CC}$				
		$V_I = GND; V_{CC} = 0.8 V \text{ to } 3.6 V$	-	-	15	μA
l _{oz}	OFF-state output current	Y output; V _O = 0 V to 3.6 V; V _{CC} = 0 V to 3.6 V; V_{CC} = 0 V to 3.6 V; \overline{EN} = V _{CC}	-	-	±0.5	μA
I _{OFF}	power-off leakage current	V_I or $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V	<u>[1]</u> _	-	±0.5	μA
ΔI_{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	<u>[1]</u> -	-	±0.6	μΑ
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; \ I_{O} = 0 \ A; \\ V_{CC} = 0.8 \ V \ \text{to} \ 3.6 \ V \end{array}$	-	-	75	μA
Δl _{CC}	additional supply current	EN input				
		$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	-	-	50	μA
g _{fs}	forward transconductance	see Figure 10 and Figure 11				
		$V_{CC} = 0.8 V$	-	-	-	mA/V
		$V_{CC} = 1.1 \text{ V}$ to 1.3 V	-	-	10.8	mA/V
		$V_{CC} = 1.4 \text{ V}$ to 1.6 V	1.8	-	21.2	mA/V
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	7.5	-	29.9	mA/V
		V_{CC} = 2.3 V to 2.7 V	15.0	-	38.0	mA/V
		V_{CC} = 3.0 V to 3.6 V	17.8	-	39.2	mA/V
R _{bias}	bias resistance	$\overline{EN} = GND; f_i = 0 Hz; V_I = 0 V or V_{CC}; See Figure 5; for frequency behavior see Figure 6$	1.07	-	3.11	MΩ

74AUP1Z125

Low-power X-tal driver with enable and internal resistor

		· •	s; voltages are referenced to GND (ground	d = 0 V).			
HiGH-level input voltage X1 input V _{CC} = 0.8 V to 3.6 V 0.75 × V _{CC} - V EN input V _{CC} = 0.8 V 0.75 × V _{CC} - V V _{CC} = 0.8 V 0.75 × V _{CC} - V V _{CC} = 0.8 V 0.75 × V _{CC} - V V _{CC} = 0.9 V to 1.95 V 0.70 × V _{CC} - V V _{CC} = 0.3 V to 3.6 V 2.0 - V V _{CC} = 0.8 V to 3.6 V 2.0 - 0.25 × V _{CC} V V _{CC} = 0.8 V to 3.6 V - - 0.25 × V _{CC} V V _{CC} = 0.8 V to 3.6 V - - 0.25 × V _{CC} V V _{CC} = 0.8 V to 1.95 V - - 0.30 × V _{CC} V V _{CC} = 0.9 V to 1.95 V - - 0.30 × V _{CC} V V _{CC} = 0.9 V to 1.95 V - - 0.30 × V _{CC} V V _{CC} = 0.9 V to 1.95 V - 0.30 × V _{CC} V 0.30 × V _{CC} V V _{CC} = 0.9 V to 1.95 V - - V 0.25 × V _{CC} V <th>-</th> <th></th> <th>Conditions</th> <th>Min</th> <th>Тур</th> <th>Max</th> <th>Unit</th>	-		Conditions	Min	Тур	Max	Unit
$\begin{tabular}{ c c c c c c } \hline V_{CC} = 0.8 \ V \ Io 3.6 \ V & 0.75 \ V_{CC} \ - & - & V \\ \hline \hline EN input \\ \hline V_{CC} = 0.8 \ V & 0.75 \ V_{CC} \ - & - & V \\ \hline V_{CC} = 0.9 \ V \ Io 1.95 \ V & 0.75 \ V_{CC} \ - & - & V \\ \hline V_{CC} = 3.0 \ V \ Io 3.6 \ V & 0.70 \ V_{CC} \ - & - & V \\ \hline V_{CC} = 3.0 \ V \ Io 3.6 \ V & 2.0 \ - & - & V \\ \hline V_{CC} = 3.0 \ V \ Io 3.6 \ V & 2.0 \ - & - & V \\ \hline V_{CC} = 0.8 \ V \ Io 3.6 \ V & - & - & 0.25 \ V_{CC} \ V \\ \hline \hline V_{CC} = 0.8 \ V \ Io 3.6 \ V & - & - & 0.25 \ V_{CC} \ V \\ \hline \hline V_{CC} = 0.8 \ V \ Io 3.6 \ V & - & - & 0.25 \ V_{CC} \ V \\ \hline \hline \hline V_{CC} = 0.8 \ V \ Io 3.6 \ V & - & - & 0.25 \ V_{CC} \ V \\ \hline \hline \hline V_{CC} = 0.8 \ V \ Io 3.6 \ V & - & - & 0.25 \ V_{CC} \ V \\ \hline \hline V_{CC} = 0.8 \ V \ Io 1.95 \ V \ - & - & 0.7 \ V \\ \hline \hline V_{CC} = 2.0 \ V \ Io 1.95 \ V \ - & - & 0.7 \ V \\ \hline \hline V_{CC} = 2.3 \ V \ Io 1.95 \ V \ - & - & 0.7 \ V \\ \hline \hline V_{CC} = 3.0 \ V \ Io 3.6 \ V \ V_{CC} - 0.11 \ - & - \ V \\ \hline \hline \hline V_{CC} = 0.9 \ V \ Io 1.95 \ V \ Io 2.5 \ V \ V_{CC} - 0.11 \ - & - \ V \\ \hline \hline \hline I_0 = -2.7 \ MA; \ V_{CC} = 1.1 \ V \ 0.6 \ V_{CC} \ - \ V \ V \\ \hline \hline I_0 = -1.1 \ MA; \ V_{CC} = 1.6 \ V \ I.177 \ - \ V \\ \hline \hline I_0 = -2.3 \ MA; \ V_{CC} = 3.0 \ V \ 2.40 \ - \ V \ V \ V \ V \ V \ V \ V \ V \ V$	T _{amb} = -	40 °C to +125 °C					
$\begin{tabular}{ c c c c c } \hline c c c c c c c c c c c c c c c c c c $	VIH	HIGH-level input voltage	X1 input				
$\begin{tabular}{ c c c c c } \hline V_{CC} = 0.8 \ V & 0.75 \ V_{CC} \ - & - & V \\ \hline V_{CC} = 0.9 \ V to 1.95 \ V & 0.70 \ V_{CC} \ - & - & V \\ \hline V_{CC} = 2.3 \ V to 2.7 \ V & 1.6 & - & V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & 2.0 & - & - & V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & 2.0 & - & - & V \\ \hline V_{CC} = 0.8 \ V to 3.6 \ V & - & - & 0.25 \ V_{CC} \ V \\ \hline \hline V_{CC} = 0.8 \ V to 3.6 \ V & - & - & 0.25 \ V_{CC} \ V \\ \hline \hline V_{CC} = 0.8 \ V to 3.6 \ V & - & - & 0.25 \ V_{CC} \ V \\ \hline V_{CC} = 0.8 \ V & 0.195 \ V & - & - & 0.30 \ V_{CC} \ V \\ \hline V_{CC} = 0.9 \ V to 1.95 \ V & - & - & 0.30 \ V_{CC} \ V \\ \hline V_{CC} = 2.3 \ V to 3.6 \ V & - & - & 0.30 \ V_{CC} \ V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & - & - & 0.7 \ V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & - & - & 0.7 \ V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & - & - & 0.7 \ V \\ \hline V_{CC} = 0.1 \ V & 0.6 \ V_{CC} \ - & - \ V \\ \hline V_{CC} = 0.1 \ V & 0.6 \ V_{CC} \ - & - \ V \\ \hline V_{CC} = -20 \ \mu A; \ V_{CC} = 0.8 \ V \ 0.6 \ V_{CC} \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.68 \ V_{CC} \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 2.3 \ V \ 1.77 \ - & V \\ \hline I_0 = -2.3 \ mA; \ V_{CC} = 2.3 \ V \ 1.77 \ - & - \ V \\ \hline I_0 = -2.3 \ mA; \ V_{CC} = 3.0 \ V \ 2.30 \ - & - \ V \\ \hline I_0 = -4.0 \ mA; \ V_{CC} = 0.8 \ V \ 0.68 \ V_{CC} \ - & - \ V \\ \hline I_0 = -2.0 \ \mu A; \ V_{CC} = 0.8 \ V \ 0.68 \ V \\ \hline V_{CC} \ - & - \ V \\ \hline I_0 = -2.1 \ mA; \ V_{CC} = 3.0 \ V \ 2.30 \ - & - \ V \\ \hline V_{CC} \ - & - \ V \\ \hline I_0 = -2.0 \ mA; \ V_{CC} \ - & 0.8 \ V \\ \hline V_{CC} \ - & - \ V \\ \hline I_0 = -2.0 \ mA; \ V_{CC} \ - & - \ V \\ \hline V_{CC} \ - & - \ $			$V_{CC} = 0.8 V$ to 3.6 V	$0.75 \times V_{CC}$	-	-	V
$\begin{tabular}{ c c c c c c } V_{CC} = 0.9 \ V \ to $1.95 \ V $$ 0.70 \ \times V_{CC} $$ - $$ - $$ V$ $$ V_{CC} = 2.3 \ V \ to $2.7 \ V $$ 1.6 $$ - $$ - $$ V$ $$ V_{CC} = 3.0 \ V \ to $3.6 \ V $$ 2.0 $$ - $$ - $$ V$ $$ V$ $$ V_{CC} = 3.0 \ V \ to $3.6 \ V $$ 2.0 $$ - $$ - $$ 0.25 \ \times V_{CC} $$ V$ $$ V$ $$ V$ $$ V$ $$ V$ $$ C_{C} = 0.8 \ V \ to $3.6 \ V $$ - $$ - $$ 0.25 \ \times V_{CC} $$ V$ $$ V$ $$ V$ $$ V$ $$ C_{C} = 0.8 \ V \ to $3.6 \ V $$ - $$ - $$ 0.25 \ \times V_{CC} $$ V$ $$ V$ $$ V$ $$ V$ $$ V$ $$ C_{C} = 0.8 \ V \ to $1.95 \ V $$ - $$ - $$ 0.30 \ \times V_{CC} $$ V$ $$ V$ $$ V$ $$ V$ $$ C_{C} = 0.8 \ V \ to $1.95 \ V $$ - $$ - $$ 0.30 \ \times V_{CC} $$ V$ $$ V$ $$ V$ $$ V$ $$ C_{C} = 3.0 \ V \ to $1.95 \ V $$ - $$ - $$ 0.30 \ \times V$ $$ V$ $$ V$ $$ V$ $$ C_{C} = 3.0 \ V \ to $3.6 \ V $$ - $$ - $$ 0.30 \ \times V$ $$ V$ $$ V$ $$ C_{C} = 3.0 \ V \ to $3.6 \ V $$ - $$ - $$ 0.30 \ \times V$ $$ V$ $$ V$ $$ V$ $$ C_{C} = 3.0 \ V \ to $3.6 \ V $$ - $$ - $$ 0.30 \ \times V$ $$ V$ $$ V$ $$ V$ $$ C_{C} = 3.0 \ V \ to $3.6 \ V $$ V$ $$ - $$ - $$ 0.30 \ \times V$ $$ V$ $$ V$ $$ V$ $$ C_{C} = 3.0 \ V \ $$ 0.30 \ \times V$ $$ V$ $$ V$ $$ V$ $$ C_{C} = 3.0 \ V \ $$ 0.30 \ \times V$ $$ V$ $$ V$ $$ V$ $$ 0.30 \ \times V$ $$ V$ $$ V$ $$ V$ $$ V$ $$ V$ $$ 0.5 \ V \ V$ $$ 0.5 \$			EN input				
$ \begin{array}{ c c c c c c } \hline V_{CC} = 2.3 \ V \ to \ 2.7 \ V & 1.6 & - & - & V \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & 2.0 & - & - & V \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & 2.0 & - & - & V \\ \hline V_{CC} = 0.8 \ V \ to \ 3.6 \ V & - & - & 0.25 \times V_{CC} \ V \\ \hline \hline EN \ input & & & & & & \\ \hline V_{CC} = 0.8 \ V \ to \ 3.6 \ V & - & - & 0.25 \times V_{CC} \ V \\ \hline V_{CC} = 0.9 \ V \ to \ 1.95 \ V & - & - & 0.30 \times V_{CC} \ V \\ \hline V_{CC} = 0.9 \ V \ to \ 1.95 \ V & - & - & 0.30 \times V_{CC} \ V \\ \hline V_{CC} = 2.3 \ V \ to \ 2.7 \ V & - & - & 0.7 \ V \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & - & - & 0.7 \ V \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & - & - & 0.9 \ V \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & - & - & 0.9 \ V \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & 0.6 \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.4 \ V & 0.93 \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.65 \ V & 1.17 \ - & V \\ \hline I_0 = -2.3 \ mA; \ V_{CC} = 3.0 \ V \ 2.40 \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 2.30 \ - & - \ V \\ \hline I_0 = -2.7 \ mA; \ V_{CC} = 3.0 \ V \ 2.30 \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.6 \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.6 \ V_{CC} \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.6 \ V_{CC} \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.6 \ V_{CC} \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 1.17 \ - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 1.67 \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.6 \ V_{CC} \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.6 \ V_{CC} \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.6 \ V_{CC} \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.93 \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.93 \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.93 \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.93 \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.93 \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.8 \ V \ 0.93 \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 2.3 \ V \ 1.77 \ - \ V \ V \\ \hline I_0 = -2.3 \ mA; \ V_{CC} $			$V_{CC} = 0.8 V$	$0.75 \times V_{CC}$	-	-	V
$\begin{tabular}{ c c c c c } \hline V_{CC} = 3.0 \ V to 3.6 \ V & 2.0 & - & - & V \\ \hline V_{UL} & LOW-level input voltage \\ & X1 input \\ \hline V_{CC} = 0.8 \ V to 3.6 \ V & - & - & 0.25 \ V_{CC} & V \\ \hline \hline EN input \\ \hline V_{CC} = 0.8 \ V to 1.95 \ V & - & - & 0.30 \ V_{CC} & V \\ \hline V_{CC} = 0.9 \ V to 1.95 \ V & - & - & 0.30 \ V_{CC} & V \\ \hline V_{CC} = 2.3 \ V to 2.7 \ V & - & - & 0.7 & V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & - & - & 0.9 & V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & - & - & 0.9 & V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & - & - & 0.9 & V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & - & - & 0.9 & V \\ \hline V_{CC} = 3.0 \ V to 3.6 \ V & - & - & 0.9 & V \\ \hline V_{CC} = 0.11 \ N_1 \ U_{CC} = 0.8 \ V to 3.6 \ V & V_{CC} - 0.11 \ - & V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 0.8 \ V to 3.6 \ V & 0.6 \ V_{CC} & - & V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.4 \ V & 0.93 \ - & - & V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.65 \ V & 1.17 \ - & - & V \\ \hline I_0 = -2.7 \ mA; \ V_{CC} = 3.0 \ V \ 2.30 \ - & - & V \\ \hline I_0 = -2.7 \ mA; \ V_{CC} = 3.0 \ V \ 0.6 \ V_{CC} - 0.11 \ - & - & V \\ \hline I_0 = -1.7 \ mA; \ V_{CC} = 3.0 \ V \ 2.30 \ - & - & V \\ \hline I_0 = -2.0 \ \muA; \ V_{CC} = 1.65 \ V \ 1.67 \ - & - & V \\ \hline I_0 = -2.0 \ \muA; \ V_{CC} = 3.0 \ V \ 2.30 \ - & - & V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ V_{CC} - 0.11 \ - & - & V \\ \hline I_0 = -2.7 \ mA; \ V_{CC} = 3.0 \ V \ 2.40 \ - & - & V \\ \hline I_0 = -1.7 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ - & - & V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ V_{CC} - 0.11 \ - & - & V \\ \hline I_0 = -1.7 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ - & - & V \\ \hline I_0 = -1.7 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ - & - & V \\ \hline I_0 = -1.7 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ - & - & V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ V_{CC} - 0.11 \ - & - & V \\ \hline I_0 = -1.7 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ - & - & V \\ \hline I_0 =1 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ - & - & V \\ \hline I_0 =2 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ - & - & V \\ \hline I_0 =2 \ mA; \ V_{CC} = 1.0 \ V \ 1.6 \ - & - & V \\ \hline I_0 =2 \ mA; \ V_{CC} = 1.0 \ V \ 1.6 \ - & - & V \\ \hline I_0 =2 \ mA; \ V_{$			$V_{CC} = 0.9 \text{ V} \text{ to } 1.95 \text{ V}$	$0.70 \times V_{CC}$	-	-	V
$ \begin{array}{ c c c c c } \mbox{LOW-level input voltage} \\ & \begin{tabular}{ c c c c c } & \begin{tabular}{ c c c c c } X1 input \\ \hline V_{CC} = 0.8 \ V \ 0.3 \ 0.4 \ V \ 0.6 \ V \ 0.25 \ V_{CC} \ V \\ \hline \hline V_{CC} = 0.8 \ V \ 0.3 \ 0.4 \ V \ 0.26 \ V \ V_{CC} \ V \\ \hline \hline V_{CC} = 0.8 \ V \ 0.195 \ V \ - & - & 0.30 \ V_{CC} \ V \\ \hline V_{CC} = 0.9 \ V \ 0.195 \ V \ - & - & 0.30 \ V \ V_{CC} \ V \\ \hline V_{CC} = 0.3 \ V \ 0.25 \ V \ 0.25 \ V \ V \\ \hline V_{CC} = 0.3 \ V \ 0.25 \ V \ 0.25 \ V \ V \\ \hline V_{CC} = 0.3 \ V \ 0.195 \ V \ - & - & 0.30 \ V \ V_{CC} \ V \\ \hline V_{CC} = 0.3 \ V \ 0.3 \ V \ V \ 0.25 \ V \ 0.25 \ V \ V \\ \hline V_{CC} = 0.3 \ V \ 0.3 \ V \ 0.25 \ V \ 0.25 \ V \ V \\ \hline V_{CC} = 0.3 \ V \ 0.3 \ V \ 0.25 \ V \ 0.25 \ V \ V \\ \hline V_{CC} = 0.3 \ V \ 0.3 \ V \ 0.25 \ V \ 0.25 \ V \ V \\ \hline V_{CC} = 0.3 \ V \ 0.3 \ V \ 0.25 \ V \ V \ V \ 0.9 \ V \ V \ 0.9 \ V \ 0.9 \ V \ 0.9 \ V \ V \ 0.9 \$			V_{CC} = 2.3 V to 2.7 V	1.6	-	-	V
$\begin{tabular}{ c c c c } & V_{CC} = 0.8 \ V \ to 3.6 \ V & - & - & 0.25 \ \times V_{CC} \ V \\ \hline \begin{tabular}{ c c c c } \hline & V_{CC} = 0.8 \ V & - & - & 0.25 \ \times V_{CC} \ V \\ \hline V_{CC} = 0.8 \ V & - & - & 0.30 \ \times V_{CC} \ V \\ \hline V_{CC} = 0.9 \ V \ to 1.95 \ V & - & - & 0.30 \ \times V_{CC} \ V \\ \hline V_{CC} = 2.3 \ V \ to 2.7 \ V & - & - & 0.7 \ V \\ \hline V_{CC} = 3.0 \ V \ to 3.6 \ V & - & - & 0.9 \ V \\ \hline V_{CC} = 3.0 \ V \ to 3.6 \ V & - & - & 0.9 \ V \\ \hline V_{CC} = 3.0 \ V \ to 3.6 \ V & - & - & 0.9 \ V \\ \hline V_{CC} = -20 \ \mu A; \ V_{CC} = 0.8 \ V \ to 3.6 \ V \ V_{CC} - 0.11 \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.4 \ V \ 0.93 \ - & - \ V \\ \hline I_0 = -1.7 \ mA; \ V_{CC} = 1.4 \ V \ 0.93 \ - & - \ V \\ \hline I_0 = -2.3 \ mA; \ V_{CC} = 2.3 \ V \ 1.17 \ - & - \ V \\ \hline I_0 = -2.7 \ mA; \ V_{CC} = 3.0 \ V \ 2.40 \ - & - \ V \\ \hline I_0 =4 \ mA; \ V_{CC} = 3.0 \ V \ 2.40 \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.4 \ V \ 0.93 \ - & - \ V \\ \hline I_0 = -20 \ \mu A; \ V_{CC} = 3.0 \ V \ 2.40 \ - & - \ V \\ \hline I_0 =1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ - & - \ V \\ \hline I_0 = -20 \ \mu A; \ V_{CC} = 1.6 \ V \ 1.17 \ - & - \ V \\ \hline I_0 = -20 \ \mu A; \ V_{CC} = 3.0 \ V \ 2.40 \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.6 \ V \ 1.17 \ - & - \ V \\ \hline I_0 = -20 \ \mu A; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ V_{CC} \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ V_{CC} \ - \ V \ V \ V_{CC} \ - \ V \ V \ V \ V_{CC} \ - \ V \ V \ V \ V \ V \ V \ V \ V \ V$			$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	-	-	V
$\begin{tabular}{ c c c c } \hline {\sf EN input} \\ \hline V_{CC} = 0.8 \ V & - & - & 0.25 \ \times V_{CC} \ V \\ V_{CC} = 0.9 \ V \ to \ 1.95 \ V & - & - & 0.30 \ \times V_{CC} \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V & - & - & 0.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V & - & - & 0.9 \ V \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & - & - & 0.9 \ V \\ \hline V_{CC} = 3.0 \ V \ to \ 3.6 \ V & - & - & 0.9 \ V \\ \hline V_{CC} = -20 \ \mu A; \ V_{CC} = 0.8 \ V \ to \ 3.6 \ V \ V_{CC} - 0.11 \ - & - \ V \\ \hline I_0 = -20 \ \mu A; \ V_{CC} = 1.4 \ V & 0.93 \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.65 \ V & 1.17 \ - & - \ V \\ \hline I_0 = -1.9 \ mA; \ V_{CC} = 1.65 \ V & 1.17 \ - & - \ V \\ \hline I_0 = -2.3 \ mA; \ V_{CC} = 2.3 \ V \ 1.67 \ - & - \ V \\ \hline I_0 = -2.7 \ mA; \ V_{CC} = 3.0 \ V \ 2.30 \ - & - \ V \\ \hline I_0 = -20 \ \mu A; \ V_{CC} = 1.1 \ V & 0.6 \ \times V_{CC} \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.0 \ V \ 2.40 \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V & 0.6 \ \times V_{CC} \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 0.8 \ V \ 5.6 \ V \ CC \ - & - \ V \\ \hline I_0 = -2.7 \ mA; \ V_{CC} = 3.0 \ V \ 2.40 \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.4 \ V \ 0.93 \ - & - \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ - \ V \ V \\ \hline I_0 = -1.1 \ mA; \ V_{CC} = 1.0 \ V \ 2.30 \ - \ V \ V \ V \ V \ V \ V \ V \ V \ V$	V _{IL}	LOW-level input voltage	X1 input				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$V_{CC} = 0.8 V$ to 3.6 V	-	-	$0.25 \times V_{CC}$	V
$ \begin{array}{ c c c c c c } V_{CC} = 0.9 \ V \ to \ 1.95 \ V & - & - & 0.30 \ \times V_{CC} \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V & - & - & 0.9 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V & - & - & 0.9 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V & - & - & 0.9 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V & - & - & 0.9 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V & V_{CC} - 0.11 \ & - & V \\ I_0 = -20 \ \mu A; \ V_{CC} = 0.8 \ V \ to \ 3.6 \ V & V_{CC} - 0.11 \ & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V & 0.6 \ \times V_{CC} \ & - & V \\ I_0 = -1.7 \ mA; \ V_{CC} = 1.65 \ V & 1.17 \ & - & V \\ I_0 = -1.9 \ mA; \ V_{CC} = 1.65 \ V & 1.17 \ & - & V \\ I_0 = -2.3 \ mA; \ V_{CC} = 2.3 \ V & 1.67 \ & - & V \\ I_0 = -2.7 \ mA; \ V_{CC} = 3.0 \ V & 2.40 \ & - & - & V \\ I_0 = -0.0 \ mA; \ V_{CC} = 0.8 \ V \ 0.36 \ V \ V_{CC} - 0.11 \ & - & - & V \\ I_0 = -2.0 \ \muA; \ V_{CC} = 0.8 \ V \ 0.36 \ V \ V_{CC} - 0.11 \ & - & - & V \\ I_0 = -2.0 \ \muA; \ V_{CC} = 0.8 \ V \ 0.36 \ V \ V_{CC} - 0.11 \ & - & - & V \\ I_0 = -2.0 \ \muA; \ V_{CC} = 0.8 \ V \ 0.36 \ V \ V_{CC} - 0.11 \ & - & - & V \\ I_0 = -2.0 \ \muA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ & - & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ & - & - & V \\ I_0 = -2.0 \ \muA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ & - & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ & - & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ & - & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.1 \ V \ 0.6 \ \times V_{CC} \ & - & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.4 \ V \ 0.93 \ & - & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ & - & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ & - & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ & - & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ & - & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ & - & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ & - & - & V \\ I_0 = -1.1 \ mA; \ V_{CC} = 1.65 \ V \ 1.17 \ & - & - & V \\ I_0 = \ & - & V \\ I_0 = $			EN input				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$V_{CC} = 0.8 V$	-	-	$0.25 \times V_{CC}$	V
$ \frac{1}{V_{CC}} = 3.0 \text{ V to } 3.6 \text{ V} 0.9 \text{ V} $ $ \text{HIGH-level output voltage} $ $ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$V_{CC} = 0.9 V$ to 1.95 V	-	-	$0.30 \times V_{\text{CC}}$	V
$\label{eq:horizondef} \begin{tabular}{lllllllllllllllllllllllllllllllllll$			$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	-	0.7	V
$\begin{split} I_{O} &= -20 \; \mu A; V_{CC} = 0.8 \; V \text{ to } 3.6 \; V \qquad V_{CC} - 0.11 \; - \qquad - \qquad V \\ I_{O} &= -1.1 \; \text{mA}; \; V_{CC} = 1.1 \; V \qquad 0.6 \times V_{CC} \; - \qquad - \qquad V \\ I_{O} &= -1.7 \; \text{mA}; \; V_{CC} = 1.4 \; V \qquad 0.93 \; - \qquad - \qquad V \\ I_{O} &= -1.9 \; \text{mA}; \; V_{CC} = 1.65 \; V \qquad 1.17 \; - \qquad - \qquad V \\ I_{O} &= -2.3 \; \text{mA}; \; V_{CC} = 2.3 \; V \qquad 1.77 \; - \qquad - \qquad V \\ I_{O} &= -3.1 \; \text{mA}; \; V_{CC} = 2.3 \; V \qquad 1.67 \; - \qquad - \qquad V \\ I_{O} &= -2.7 \; \text{mA}; \; V_{CC} = 3.0 \; V \qquad 2.40 \; - \qquad - \qquad V \\ I_{O} &= -4.0 \; \text{mA}; \; V_{CC} = 3.0 \; V \qquad 2.30 \; - \qquad - \qquad V \\ X2 \; \text{ output; } V_{I} = \text{ GND or } V_{CC} \\ I_{O} &= -1.1 \; \text{mA}; \; V_{CC} = 1.1 \; V \qquad 0.6 \times V_{CC} \; - \qquad - \qquad V \\ I_{O} &= -1.1 \; \text{mA}; \; V_{CC} = 1.4 \; V \qquad 0.93 \; - \qquad - \qquad V \\ I_{O} &= -1.1 \; \text{mA}; \; V_{CC} = 1.4 \; V \qquad 0.93 \; - \qquad - \qquad V \\ I_{O} &= -1.2 \; \text{mA}; \; V_{CC} = 1.65 \; V \qquad 1.17 \; - \qquad - \qquad V \\ I_{O} &= -1.2 \; \text{mA}; \; V_{CC} = 1.65 \; V \qquad 1.17 \; - \qquad - \qquad V \\ I_{O} &= -1.3 \; \text{mA}; \; V_{CC} = 2.3 \; V \qquad 1.67 \; - \qquad - \qquad V \\ I_{O} &= -1.2 \; \text{mA}; \; V_{CC} = 1.65 \; V \qquad 1.17 \; - \qquad - \qquad V \\ I_{O} &= -2.3 \; \text{mA}; \; V_{CC} = 2.3 \; V \qquad 1.67 \; - \qquad - \qquad V \\ I_{O} &= -2.3 \; \text{mA}; \; V_{CC} = 2.3 \; V \qquad 1.67 \; - \qquad - \qquad V \\ I_{O} &= -2.1 \; \text{mA}; \; V_{CC} = 2.3 \; V \qquad 1.67 \; - \qquad - \qquad V \\ I_{O} &= -2.1 \; \text{mA}; \; V_{CC} = 2.3 \; V \qquad 1.67 \; - \qquad - \qquad V \\ I_{O} &= -2.7 \; \text{mA}; \; V_{CC} = 3.0 \; V \qquad 2.40 \; - \qquad - \qquad V \\ V \; V \\ I_{O} &= -2.7 \; \text{mA}; \; V_{CC} = 3.0 \; V \qquad 2.40 \; - \qquad - \qquad V \\ V \; V \;$			$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	V
$\begin{split} I_{O} &= -1.1 \text{ mA; } V_{CC} = 1.1 \text{ V} & 0.6 \times V_{CC} &- &- & \text{V} \\ I_{O} &= -1.7 \text{ mA; } V_{CC} = 1.4 \text{ V} & 0.93 &- &- & \text{V} \\ I_{O} &= -1.9 \text{ mA; } V_{CC} = 1.65 \text{ V} & 1.17 &- &- & \text{V} \\ I_{O} &= -2.3 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.77 &- &- & \text{V} \\ I_{O} &= -3.1 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.67 &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.40 &- &- & \text{V} \\ I_{O} &= -4.0 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.30 &- &- & \text{V} \\ X2 \text{ output; } V_{I} &= \text{GND or } V_{CC} \\ I_{O} &= -20 \mu\text{A; } V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} & V_{CC} - 0.11 &- &- & \text{V} \\ I_{O} &= -1.1 \text{ mA; } V_{CC} = 1.1 \text{ V} & 0.6 \times V_{CC} &- &- & \text{V} \\ I_{O} &= -1.7 \text{ mA; } V_{CC} = 1.4 \text{ V} & 0.93 &- &- & \text{V} \\ I_{O} &= -1.9 \text{ mA; } V_{CC} = 1.65 \text{ V} & 1.17 &- &- & \text{V} \\ I_{O} &= -2.3 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.77 &- &- & \text{V} \\ I_{O} &= -2.3 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.67 &- &- & \text{V} \\ I_{O} &= -2.1 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.67 &- &- & \text{V} \\ I_{O} &= -2.1 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.67 &- &- & \text{V} \\ I_{O} &= -2.1 \text{ mA; } V_{CC} &= 2.3 \text{ V} & 1.67 &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 2.3 \text{ V} & 1.67 &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 2.3 \text{ V} & 1.67 &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 2.3 \text{ V} & 1.67 &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 2.3 \text{ V} & 1.67 &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 2.3 \text{ V} & 1.67 &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 3.0 \text{ V} & 2.40 &- &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 3.0 \text{ V} & 2.40 &- &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 3.0 \text{ V} & 2.40 &- &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 3.0 \text{ V} & 2.40 &- &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 3.0 \text{ V} & 2.40 &- &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 3.0 \text{ V} & 2.40 &- &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 3.0 \text{ V} & 2.40 &- &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 3.0 \text{ V} & 2.40 &- &- &- &- & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} &= 3.0 \text{ V} & 2.40 &- &- $	V _{OH}	HIGH-level output voltage	Y output; V_I at X1 input = V_{IH} or V_{IL}				
$\begin{split} & I_{O} = -1.7 \; mA; V_{CC} = 1.4 \; V & 0.93 - - V \\ & I_{O} = -1.9 \; mA; V_{CC} = 1.65 \; V & 1.17 - - V \\ & I_{O} = -2.3 \; mA; V_{CC} = 2.3 \; V & 1.77 - - V \\ & I_{O} = -3.1 \; mA; V_{CC} = 2.3 \; V & 1.67 - - V \\ & I_{O} = -2.7 \; mA; V_{CC} = 3.0 \; V & 2.40 - - V \\ & I_{O} = -4.0 \; mA; V_{CC} = 3.0 \; V & 2.30 - - V \\ & I_{O} = -4.0 \; mA; V_{CC} = 3.0 \; V & 2.30 - - V \\ & I_{O} = -4.0 \; mA; V_{CC} = 3.0 \; V & 2.30 - - V \\ & I_{O} = -4.0 \; mA; V_{CC} = 3.0 \; V & 2.30 - - V \\ & I_{O} = -4.0 \; mA; V_{CC} = 1.0 \; V & 0.6 \times V_{CC} & - V \\ & I_{O} = -20 \; \mu A; V_{CC} = 1.1 \; V & 0.6 \times V_{CC} & - V \\ & I_{O} = -1.1 \; mA; V_{CC} = 1.4 \; V & 0.93 - - V \\ & I_{O} = -1.9 \; mA; V_{CC} = 1.65 \; V & 1.17 - V \\ & I_{O} = -2.3 \; mA; V_{CC} = 2.3 \; V & 1.67 - V \\ & I_{O} = -2.3 \; mA; V_{CC} = 2.3 \; V & 1.67 - V \\ & I_{O} = -3.1 \; mA; V_{CC} = 3.0 \; V & 2.40 - - V \\ & I_{O} = -2.7 \; mA; V_{CC} = 3.0 \; V & 2.40 - - V \\ \\ & I_{O} = -2.7 \; mA; V_{CC} = 3.0 \; V & 2.40 - - V \\ \\ & I_{O} = -2.7 \; mA; V_{CC} = 3.0 \; V & 2.40 - - V \\ \\ & V_{O} = -2.7 \; mA; V_{CC} = 3.0 \; V & 2.40 - - V \\ \\ & V_{O} = -2.7 \; M; \; V_{CC} = 3.0 \; V & 2.40 - - V \\ \\ & V_{O} = -2.7 \; V \\ \\ & V_{$			I_{O} = –20 $\mu\text{A};$ V_{CC} = 0.8 V to 3.6 V	$V_{CC} - 0.11$	-	-	V
$\begin{split} & I_{O} = -1.9 \; mA; V_{CC} = 1.65 \; V & 1.17 & - & - & V \\ & I_{O} = -2.3 \; mA; V_{CC} = 2.3 \; V & 1.77 & - & - & V \\ & I_{O} = -3.1 \; mA; V_{CC} = 2.3 \; V & 1.67 & - & - & V \\ & I_{O} = -2.7 \; mA; V_{CC} = 3.0 \; V & 2.40 & - & - & V \\ & I_{O} = -4.0 \; mA; V_{CC} = 3.0 \; V & 2.30 & - & - & V \\ & X2 \; \text{output}; V_{I} = GND \; or \; V_{CC} \\ & I_{O} = -20 \; \mu A; V_{CC} = 0.8 \; V \; \text{to} \; 3.6 \; V & V_{CC} - 0.11 \; - & - & V \\ & I_{O} = -1.1 \; mA; \; V_{CC} = 1.1 \; V & 0.6 \times V_{CC} \; - & - & V \\ & I_{O} = -1.7 \; mA; V_{CC} = 1.4 \; V & 0.93 \; - & - & V \\ & I_{O} = -1.9 \; mA; V_{CC} = 1.65 \; V & 1.17 \; - & - & V \\ & I_{O} = -2.3 \; mA; V_{CC} = 2.3 \; V & 1.77 \; - & - & V \\ & I_{O} = -2.1 \; mA; V_{CC} = 2.3 \; V & 1.67 \; - & - & V \\ & I_{O} = -2.7 \; mA; V_{CC} = 2.3 \; V & 1.67 \; - & - & V \\ & I_{O} = -2.7 \; mA; V_{CC} = 3.0 \; V & 2.40 \; - & - & V \\ \\ & I_{O} = -2.7 \; mA; V_{CC} = 3.0 \; V & 2.40 \; - & - & V \\ \\ & I_{O} = -2.7 \; mA; V_{CC} = 3.0 \; V & 2.40 \; - & - & V \\ \\ & V_{O} = -2.7 \; mA; V_{CC} = 3.0 \; V & 2.40 \; - & - & V \\ \\ & V_{O} = -2.7 \; mA; \; V_{CC} = 3.0 \; V & 2.40 \; - & - & V \\ \\ & V_{O} = -2.7 \; mA; \; V_{CC} = 3.0 \; V & 2.40 \; - & - & V \\ \\ & V_{O} = -2.7 \; M; \; V_{CC} = 3.0 \; V & 2.40 \; - & - & V \\ \\ & V_{O} = -2.7 \; V \\ $			$I_0 = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.6 imes V_{CC}$	-	-	V
$\begin{split} & O = -2.3 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.77 & - & - & \text{V} \\ & O = -3.1 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.67 & - & - & \text{V} \\ & O = -2.7 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.40 & - & - & \text{V} \\ & O = -4.0 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.30 & - & - & \text{V} \\ & O = -4.0 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.30 & - & - & \text{V} \\ & X2 \text{ output; } V_{I} = \text{GND or } V_{CC} \\ & O = -20 \ \mu\text{A; } V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} & V_{CC} - 0.11 & - & - & \text{V} \\ & O = -1.1 \ \text{mA; } V_{CC} = 1.1 \text{ V} & 0.6 \times \text{V}_{CC} & - & - & \text{V} \\ & O = -1.7 \ \text{mA; } V_{CC} = 1.4 \text{ V} & 0.93 & - & - & \text{V} \\ & O = -1.9 \ \text{mA; } V_{CC} = 1.65 \text{ V} & 1.17 & - & - & \text{V} \\ & O = -2.3 \ \text{mA; } V_{CC} = 2.3 \text{ V} & 1.77 & - & - & \text{V} \\ & O = -2.1 \ \text{mA; } V_{CC} = 2.3 \text{ V} & 1.67 & - & - & \text{V} \\ & O = -2.7 \ \text{mA; } V_{CC} = 3.0 \text{ V} & 2.40 & - & - & \text{V} \\ \end{array}$			$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	0.93	-	-	V
$\begin{split} I_{O} &= -3.1 \text{ mA}; \text{ V}_{CC} = 2.3 \text{ V} & 1.67 & - & - & \text{V} \\ I_{O} &= -2.7 \text{ mA}; \text{ V}_{CC} = 3.0 \text{ V} & 2.40 & - & - & \text{V} \\ I_{O} &= -4.0 \text{ mA}; \text{ V}_{CC} = 3.0 \text{ V} & 2.30 & - & - & \text{V} \\ \textbf{X2 output; V_{I} = GND or V_{CC}} & & & & \\ I_{O} &= -20 \mu\text{A}; \text{ V}_{CC} = 0.8 \text{ V to } 3.6 \text{ V} & \text{V}_{CC} - 0.11 & - & - & \text{V} \\ I_{O} &= -1.1 \text{ mA}; \text{ V}_{CC} = 1.1 \text{ V} & 0.6 \times \text{V}_{CC} & - & - & \text{V} \\ I_{O} &= -1.7 \text{ mA}; \text{ V}_{CC} = 1.4 \text{ V} & 0.93 & - & - & \text{V} \\ I_{O} &= -1.9 \text{ mA}; \text{ V}_{CC} = 1.65 \text{ V} & 1.17 & - & - & \text{V} \\ I_{O} &= -2.3 \text{ mA}; \text{ V}_{CC} = 2.3 \text{ V} & 1.77 & - & - & \text{V} \\ I_{O} &= -3.1 \text{ mA}; \text{ V}_{CC} = 3.0 \text{ V} & 2.40 & - & - & \text{V} \\ \end{split}$			$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.17	-	-	V
$\begin{split} & I_0 = -2.7 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.40 - & - & \text{V} \\ & I_0 = -4.0 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.30 - & - & \text{V} \\ & X2 \text{ output; } V_I = \text{GND or } V_{CC} \\ \hline & I_0 = -20 \ \mu\text{A; } V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} & V_{CC} - 0.11 - & - & \text{V} \\ & I_0 = -1.1 \text{ mA; } V_{CC} = 1.1 \text{ V} & 0.6 \times V_{CC} - & - & \text{V} \\ & I_0 = -1.7 \text{ mA; } V_{CC} = 1.4 \text{ V} & 0.93 - & - & \text{V} \\ & I_0 = -1.9 \text{ mA; } V_{CC} = 1.65 \text{ V} & 1.17 - & - & \text{V} \\ & I_0 = -2.3 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.77 - & - & \text{V} \\ & I_0 = -2.7 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.67 - & - & \text{V} \\ & I_0 = -2.7 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.40 - & - & \text{V} \\ \hline \end{aligned}$			$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.77	-	-	V
$\begin{split} I_{O} &= -4.0 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.30 & - & - & \text{V} \\ \hline X2 \text{ output; } V_{I} = \text{GND or } V_{CC} \\ I_{O} &= -20 \mu\text{A; } V_{CC} = 0.8 \text{ V to } 3.6 \text{ V} & V_{CC} - 0.11 & - & - & \text{V} \\ I_{O} &= -1.1 \text{ mA; } V_{CC} = 1.1 \text{ V} & 0.6 \times V_{CC} & - & - & \text{V} \\ I_{O} &= -1.7 \text{ mA; } V_{CC} = 1.4 \text{ V} & 0.93 & - & - & \text{V} \\ I_{O} &= -1.9 \text{ mA; } V_{CC} = 1.65 \text{ V} & 1.17 & - & - & \text{V} \\ I_{O} &= -2.3 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.77 & - & - & \text{V} \\ I_{O} &= -3.1 \text{ mA; } V_{CC} = 2.3 \text{ V} & 1.67 & - & - & \text{V} \\ I_{O} &= -2.7 \text{ mA; } V_{CC} = 3.0 \text{ V} & 2.40 & - & - & \text{V} \\ \end{split}$			$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.67	-	-	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.40	-	-	V
$\begin{split} I_{O} &= -20 \ \mu\text{A}; \ V_{CC} = 0.8 \ V \ \text{to} \ 3.6 \ V & V_{CC} - 0.11 \ - & - & V \\ I_{O} &= -1.1 \ \text{mA}; \ V_{CC} = 1.1 \ V & 0.6 \times V_{CC} \ - & - & V \\ I_{O} &= -1.7 \ \text{mA}; \ V_{CC} = 1.4 \ V & 0.93 \ - & - & V \\ I_{O} &= -1.9 \ \text{mA}; \ V_{CC} = 1.65 \ V & 1.17 \ - & - & V \\ I_{O} &= -2.3 \ \text{mA}; \ V_{CC} = 2.3 \ V & 1.77 \ - & - & V \\ I_{O} &= -3.1 \ \text{mA}; \ V_{CC} = 2.3 \ V & 1.67 \ - & - & V \\ I_{O} &= -2.7 \ \text{mA}; \ V_{CC} = 3.0 \ V & 2.40 \ - & - & V \end{split}$			$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.30	-	-	V
$\begin{split} & I_{O} = -1.1 \; mA; \; V_{CC} = 1.1 \; V & 0.6 \times V_{CC} \; - \; - \; V \\ & I_{O} = -1.7 \; mA; \; V_{CC} = 1.4 \; V & 0.93 \; - \; - \; V \\ & I_{O} = -1.9 \; mA; \; V_{CC} = 1.65 \; V & 1.17 \; - \; - \; V \\ & I_{O} = -2.3 \; mA; \; V_{CC} = 2.3 \; V & 1.77 \; - \; - \; V \\ & I_{O} = -3.1 \; mA; \; V_{CC} = 2.3 \; V & 1.67 \; - \; V \\ & I_{O} = -2.7 \; mA; \; V_{CC} = 3.0 \; V & 2.40 \; - \; V \end{split}$			X2 output; $V_I = GND$ or V_{CC}				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			I_{O} = -20 μ A; V_{CC} = 0.8 V to 3.6 V	V _{CC} – 0.11	-	-	V
$\begin{split} & I_{O} = -1.9 \text{ mA}; \text{ V}_{CC} = 1.65 \text{ V} & 1.17 & - & - & \text{V} \\ & I_{O} = -2.3 \text{ mA}; \text{ V}_{CC} = 2.3 \text{ V} & 1.77 & - & - & \text{V} \\ & I_{O} = -3.1 \text{ mA}; \text{ V}_{CC} = 2.3 \text{ V} & 1.67 & - & - & \text{V} \\ & I_{O} = -2.7 \text{ mA}; \text{ V}_{CC} = 3.0 \text{ V} & 2.40 & - & - & \text{V} \end{split}$			$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.6 \times V_{CC}$	-	-	V
$\begin{split} I_{O} &= -2.3 \text{ mA}; \text{ V}_{CC} &= 2.3 \text{ V} & 1.77 & - & - & \text{V} \\ \hline I_{O} &= -3.1 \text{ mA}; \text{ V}_{CC} &= 2.3 \text{ V} & 1.67 & - & - & \text{V} \\ \hline I_{O} &= -2.7 \text{ mA}; \text{ V}_{CC} &= 3.0 \text{ V} & 2.40 & - & - & \text{V} \end{split}$			$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	0.93	-	-	V
$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V} $ 1.67 V $I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V} $ 2.40 V			$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.17	-	-	V
$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V} $ 1.67 V $I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V} $ 2.40 V				1.77	-	-	V
$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$ 2.40 V				1.67	-	-	V
				2.40	-	-	V
			$I_0 = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.30	-	-	V

Table 7. Static characteristics ...continued

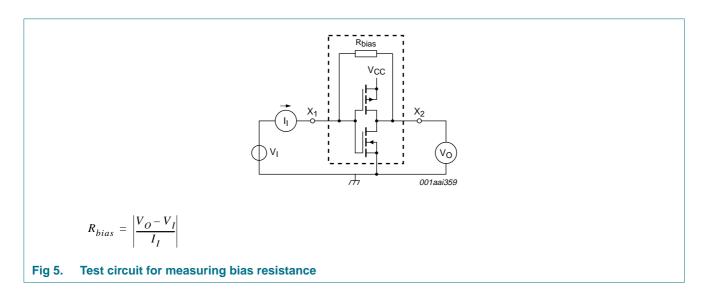
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

74AUP1Z125

Low-power X-tal driver with enable and internal resistor

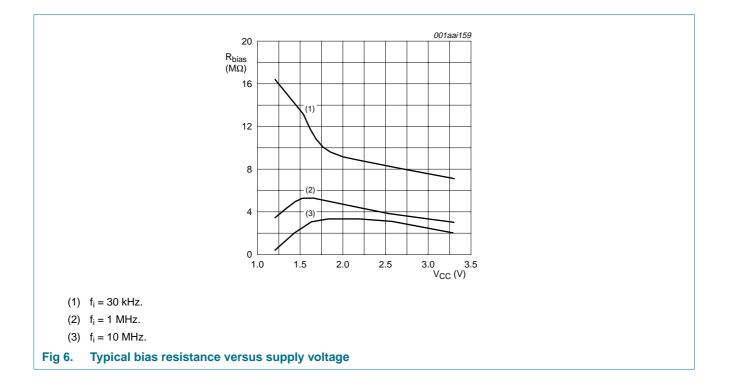
Table 7. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).


Symbol	Parameter	Conditions	Min	Тур	Max	Uni
/ _{OL}	LOW-level output voltage	Y output; $V_I = V_{IH}$ or V_{IL}				
		I_{O} = 20 $\mu A; V_{CC}$ = 0.8 V to 3.6 V	-	-	0.11	V
		$I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.33 \times V_{CC}$	V
		$I_0 = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.41	V
		$I_0 = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.39	V
		$I_0 = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.36	V
		$I_0 = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.50	V
		$I_0 = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.50	V
		X2 output; $V_1 = GND$ or V_{CC}				
		I_{O} = 20 $\mu A;$ V_{CC} = 0.8 V to 3.6 V	-	-	0.11	V
		I_{O} = 1.1 mA; V_{CC} = 1.1 V	-	-	$0.33 \times V_{CC}$	V
		$I_0 = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.41	V
		$I_0 = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.39	V
		$I_0 = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.36	V
		$I_0 = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.50	V
		$I_0 = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.50	V
I	input leakage current	X1 input				
		$V_I = \overline{EN} = V_{CC}$; $V_{CC} = 0$ V to 3.6 V	-	-	±0.75	μΑ
		EN input				
		V _I = GND to 3.6 V; V _{CC} = 0 V to 3.6 V	-	-	±0.75	μΑ
pu	pull-up current	X1 input; $\overline{EN} = V_{CC}$				
		$V_I = GND; V_{CC} = 0.8 V \text{ to } 3.6 V$	-	-	15	μΑ
loz	OFF-state output current	Y output; $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 3.6 V; $\overline{EN} = V_{CC}$	-	-	±0.75	μΑ
OFF	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	<u>[1]</u>	-	±0.75	μΑ
∆I _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	<u>[1]</u> -	-	±0.75	μΑ
сс	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; \ I_{O} = 0 \ A; \\ V_{CC} = 0.8 \ V \ \text{to} \ 3.6 \ V \end{array}$	-	-	75	μA
∆l _{CC}	additional supply current	EN input				
		$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	-	-	75	μΑ

Low-power X-tal driver with enable and internal resistor

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
9 _{fs}	forward transconductance	see Figure 10 and Figure 11				
		$V_{CC} = 0.8 V$	-	-	-	mA/V
		$V_{CC} = 1.1 \text{ V} \text{ to } 1.3 \text{ V}$	-	-	10.8	mA/V
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	1.8	-	21.2	mA/V
		$V_{CC} = 1.65 \text{ V}$ to 1.95 V	6.9	-	29.9	mA/V
		V_{CC} = 2.3 V to 2.7 V	13.4	-	38.0	mA/V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	15.8	-	39.2	mA/V
R _{bias}	bias resistance	$\overline{EN} = GND; f_i = 0 Hz; V_1 = 0 V or V_{CC}; See Figure 5; for frequency behavior see Figure 6$	1.07	-	3.11	MΩ


Table 7. Static characteristics ... continued

[1] Only for output Y and input \overline{EN} .

74AUP1Z125

Low-power X-tal driver with enable and internal resistor

Low-power X-tal driver with enable and internal resistor

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Symbol	Parameter	Conditions			25 °C		-4(0 °C to +1	25 °C	Unit
				Min	Typ[1]	Мах	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 pl	F									
t _{pd}	propagation delay	X1 to X2; see Figure 7	[2]							
		$V_{CC} = 0.8 V$		-	6.2	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		0.9	2.3	4.4	0.9	4.8	5.3	ns
		V_{CC} = 1.4 V to 1.6 V		0.7	1.7	3.1	0.6	3.4	3.8	ns
		V_{CC} = 1.65 V to 1.95 V		0.5	1.4	2.6	0.5	2.9	3.2	ns
		V_{CC} = 2.3 V to 2.7 V		0.4	1.1	2.0	0.4	2.3	2.6	ns
		V_{CC} = 3.0 V to 3.6 V		0.3	1.0	1.8	0.3	2.1	2.4	ns
		X1 to Y; see Figure 7	[2]							
		$V_{CC} = 0.8 V$		-	18.5	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		2.8	5.9	12.5	3.2	14.8	16.3	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$		2.2	4.2	7.7	2.6	9.1	10.1	ns
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		1.9	3.5	6.2	2.2	7.8	8.6	ns
		V_{CC} = 2.3 V to 2.7 V		1.6	2.9	4.8	1.9	6.2	6.9	ns
		V_{CC} = 3.0 V to 3.6 V		1.4	2.6	4.1	1.7	4.7	5.2	ns
t _{en}	enable time	EN to Y; see Figure 8	[3]							
		$V_{CC} = 0.8 V$		-	31.2	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		3.1	6.1	13.8	2.9	16.3	18.0	ns
		V_{CC} = 1.4 V to 1.6 V		2.5	4.3	8.2	2.3	9.7	10.7	ns
		V_{CC} = 1.65 V to 1.95 V		2.1	3.6	6.5	2.0	7.6	8.4	ns
		V_{CC} = 2.3 V to 2.7 V		1.8	2.9	4.8	1.7	5.8	6.4	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.7	2.6	4.1	1.7	4.7	5.2	ns
t _{dis}	disable time	EN to Y; see Figure 8	[4]							
		$V_{CC} = 0.8 V$		-	11.1	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		2.5	4.5	9.0	2.9	9.4	10.4	ns
		V_{CC} = 1.4 V to 1.6 V		2.0	3.3	6.4	2.3	6.7	7.4	ns
		V_{CC} = 1.65 V to 1.95 V		1.9	3.2	6.0	2.0	6.4	7.1	ns
		V_{CC} = 2.3 V to 2.7 V		1.4	2.3	4.4	1.7	4.7	5.2	ns
		V_{CC} = 3.0 V to 3.6 V		1.7	2.6	4.4	1.7	4.9	5.4	ns

Low-power X-tal driver with enable and internal resistor

Symbol	Parameter	Conditions			25 °C		-40) °C to +1	25 °C	Unit
				Min	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	
C _L = 10 p	pF									
t _{pd}	propagation delay	X1 to X2; see Figure 7	[2]							
		$V_{CC} = 0.8 V$		-	9.6	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		1.2	3.1	6.1	1.2	6.8	7.5	ns
		V_{CC} = 1.4 V to 1.6 V		1.0	2.3	4.0	0.9	4.6	5.1	ns
		V_{CC} = 1.65 V to 1.95 V		0.8	1.9	3.3	0.7	3.8	4.2	ns
		V_{CC} = 2.3 V to 2.7 V		0.6	1.5	2.7	0.6	3.1	3.5	ns
		V_{CC} = 3.0 V to 3.6 V		0.5	1.3	2.4	0.5	2.7	3.0	ns
		X1 to Y; see Figure 7	[2]							
		$V_{CC} = 0.8 V$		-	21.4	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		3.2	6.7	14.3	3.6	16.2	17.9	ns
		V_{CC} = 1.4 V to 1.6 V		2.1	4.9	8.9	3.0	10.1	11.2	ns
		V_{CC} = 1.65 V to 1.95 V		1.9	4.1	6.9	2.6	8.0	8.8	ns
	V_{CC} = 2.3 V to 2.7 V		2.1	3.4	5.4	2.3	6.6	7.3	ns	
		V_{CC} = 3.0 V to 3.6 V		1.8	3.1	4.8	2.1	5.6	6.2	ns
en	enable time	EN to Y; see Figure 8	[3]							
		$V_{CC} = 0.8 V$		-	34.4	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		3.6	6.9	15.5	3.4	16.0	17.6	ns
		V_{CC} = 1.4 V to 1.6 V		2.3	5.0	9.3	2.2	9.6	10.6	ns
		V_{CC} = 1.65 V to 1.95 V		2.0	4.2	7.2	1.9	7.9	8.7	ns
		V_{CC} = 2.3 V to 2.7 V		1.8	3.4	5.5	1.7	6.4	7.1	ns
		V_{CC} = 3.0 V to 3.6 V		1.7	3.2	4.9	1.7	5.5	6.1	ns
dis	disable time	EN to Y; see Figure 8	[4]							
		$V_{CC} = 0.8 V$		-	13.0	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V		3.4	5.7	10.4	3.4	10.8	11.9	ns
		V_{CC} = 1.4 V to 1.6 V		2.1	4.2	7.6	2.2	8.0	8.8	ns
		V_{CC} = 1.65 V to 1.95 V		2.2	4.3	7.3	1.9	7.6	8.4	ns
		V_{CC} = 2.3 V to 2.7 V		1.6	3.1	5.3	1.7	5.5	6.1	ns
		V_{CC} = 3.0 V to 3.6 V		2.1	3.8	6.0	1.7	6.5	7.2	ns

 Table 8.
 Dynamic characteristics ... continued

 Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Low-power X-tal driver with enable and internal resistor

Symbol	Parameter	Conditions		25 °C		-40	0 °C to +1	25 °C	Unit
			Min	Typ <mark>[1]</mark>	Max	Min	Max (85 °C)	Max (125 °C)	
C _L = 15 j	pF								
t _{pd}	propagation delay	X1 to X2; see Figure 7 [2]							
		$V_{CC} = 0.8 V$	-	13.0	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	1.6	3.8	7.9	1.4	8.8	9.7	ns
		V_{CC} = 1.4 V to 1.6 V	1.3	2.8	4.9	1.1	5.7	6.3	ns
		V_{CC} = 1.65 V to 1.95 V	1.0	2.3	4.0	0.9	4.7	5.2	ns
		V_{CC} = 2.3 V to 2.7 V	0.8	1.9	3.2	0.8	3.7	4.1	ns
		V_{CC} = 3.0 V to 3.6 V	0.7	1.6	2.9	0.7	3.3	3.7	ns
		X1 to Y; see Figure 7 [2]							
		$V_{CC} = 0.8 V$	-	24.2	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	3.6	7.5	16.1	4.0	17.6	19.4	ns
		V_{CC} = 1.4 V to 1.6 V	3.0	5.4	9.7	3.3	10.6	11.7	ns
		V_{CC} = 1.65 V to 1.95 V	2.2	4.6	7.7	2.9	9.0	9.9	ns
	V_{CC} = 2.3 V to 2.7 V	2.0	3.9	6.1	2.6	7.3	8.1	ns	
		V_{CC} = 3.0 V to 3.6 V	2.0	3.6	5.4	2.3	5.9	6.5	ns
en	enable time	EN to Y; see Figure 8[3]							
		$V_{CC} = 0.8 V$	-	37.5	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	4.0	7.7	17.2	3.7	17.5	19.3	ns
		V_{CC} = 1.4 V to 1.6 V	3.0	5.5	10.0	2.5	10.2	11.3	ns
		V_{CC} = 1.65 V to 1.95 V	2.3	4.7	7.9	2.1	9.2	10.2	ns
		V_{CC} = 2.3 V to 2.7 V	2.0	3.9	6.2	2.0	7.4	8.2	ns
		V_{CC} = 3.0 V to 3.6 V	2.0	3.6	5.5	1.9	6.0	6.6	ns
dis	disable time	EN to Y; see Figure 8[4]							
		$V_{CC} = 0.8 V$	-	14.8	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	4.3	6.8	11.2	3.7	12.4	13.7	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	3.0	5.1	8.1	2.5	8.9	9.8	ns
		V_{CC} = 1.65 V to 1.95 V	3.0	5.4	8.0	2.1	9.3	10.3	ns
		V_{CC} = 2.3 V to 2.7 V	2.1	3.9	6.1	2.0	7.3	8.1	ns
		V_{CC} = 3.0 V to 3.6 V	2.9	5.1	7.2	1.9	7.9	8.7	ns

 Table 8.
 Dynamic characteristics ... continued

 Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Low-power X-tal driver with enable and internal resistor

Symbol	Parameter	Conditions			25 °C		-40	0 °C to +1	25 °C	Unit
			Μ	lin	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	
C _L = 30	ρF									
t _{pd}	propagation delay	X1 to X2; see Figure 7	[2]							
		$V_{CC} = 0.8 V$		-	23.2	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	2	2.4	6.0	13.1	2.2	14.8	16.3	ns
		V_{CC} = 1.4 V to 1.6 V	2	2.0	4.2	7.6	1.8	9.0	9.9	ns
		V_{CC} = 1.65 V to 1.95 V	1	.7	3.6	6.1	1.5	7.2	8.0	ns
		V_{CC} = 2.3 V to 2.7 V	1	.4	2.9	4.8	1.3	5.7	6.3	ns
		V_{CC} = 3.0 V to 3.6 V	1	.2	2.5	4.3	1.1	5.1	5.7	ns
		X1 to Y; see Figure 7	[2]							
		$V_{CC} = 0.8 V$		-	32.6	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	4	.8	9.6	21.0	5.0	21.7	23.9	ns
		V_{CC} = 1.4 V to 1.6 V	4	l.0	6.9	12.4	4.3	13.5	14.9	ns
		V_{CC} = 1.65 V to 1.95 V	2	2.9	5.9	9.8	3.8	10.7	11.8	ns
	V_{CC} = 2.3 V to 2.7 V	2	2.7	5.0	7.5	3.3	8.2	9.1	ns	
		V_{CC} = 3.0 V to 3.6 V	2	2.7	4.7	6.8	3.1	7.7	8.5	ns
en	enable time	EN to Y; see Figure 8	[3]							
		$V_{CC} = 0.8 V$		-	47.1	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	5	5.2	9.9	21.0	4.8	21.7	23.9	ns
		V_{CC} = 1.4 V to 1.6 V	4	l.0	7.1	12.4	3.1	13.5	14.9	ns
		V_{CC} = 1.65 V to 1.95 V	3	8.0	6.0	9.9	2.8	10.7	11.8	ns
		V_{CC} = 2.3 V to 2.7 V	2	2.7	5.0	7.7	2.6	8.1	9.0	ns
		V_{CC} = 3.0 V to 3.6 V	2	2.7	4.8	6.8	2.6	7.7	8.5	ns
dis	disable time	EN to Y; see Figure 8	[4]							
		$V_{CC} = 0.8 V$		-	20.3	-	-	-	-	ns
		V_{CC} = 1.1 V to 1.3 V	6	6.0	10.2	15.3	4.8	16.5	18.2	ns
		V_{CC} = 1.4 V to 1.6 V	4	1.4	7.8	11.2	3.1	12.3	13.6	ns
		V_{CC} = 1.65 V to 1.95 V	5	5.1	8.8	12.5	2.8	13.3	14.7	ns
		V_{CC} = 2.3 V to 2.7 V	3	8.6	6.3	8.6	2.6	9.5	10.5	ns
		V_{CC} = 3.0 V to 3.6 V	5	i.2	8.8	11.5	2.6	13.0	14.3	ns

Table 8. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Low-power X-tal driver with enable and internal resistor

Table 8. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Symbol	Parameter	Conditions		25 °C			–40 °C to +125 °C		
			Mir	Typ[1]	Max	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 pl	F, 10 pF, 15 pF and	30 pF	·	·			·		
C _{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz}; \overline{EN} = GND;$ V _I = GND to V _{CC}	[5][6]						
		$V_{CC} = 0.8 V$	-	7.1	-	-	-	-	pF
		V_{CC} = 1.1 V to 1.3 V	-	12.9	-	-	-	-	pF
		V_{CC} = 1.4 V to 1.6 V	-	19.2	-	-	-	-	pF
		V_{CC} = 1.65 V to 1.95 V	-	19.9	-	-	-	-	pF
		V_{CC} = 2.3 V to 2.7 V	-	21.6	-	-	-	-	pF
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	24.3	-	-	-	-	pF

[1] All typical values are measured at nominal $V_{\mbox{\scriptsize CC}}.$

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] t_{en} is the same as t_{PZH} and t_{PZL}.

[4] t_{dis} is the same as t_{PHZ} and t_{PLZ} .

[5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

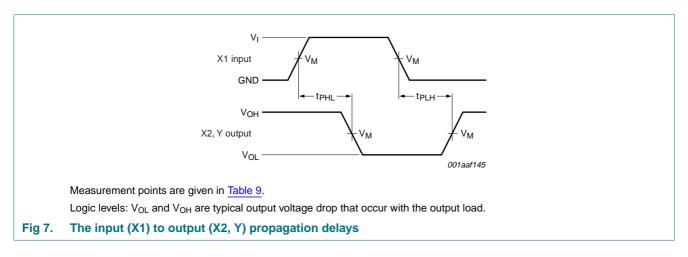
 $\mathsf{P}_{\mathsf{D}} = \mathsf{C}_{\mathsf{P}\mathsf{D}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}{}^2 \times \mathsf{f}_i \times \mathsf{N} + \Sigma(\mathsf{C}_{\mathsf{L}} \times \mathsf{V}_{\mathsf{C}\mathsf{C}}{}^2 \times \mathsf{f}_o) \text{ where:}$

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

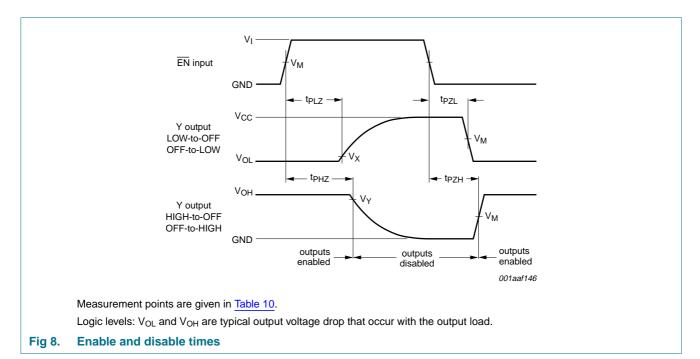
 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;


N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

[6] Feedback current is included in C_{PD}.


Low-power X-tal driver with enable and internal resistor

12. Waveforms

Table 9. Measurement points

Supply voltage	Output	Input				
V _{CC}	V _M	V _M	VI	t _r = t _f		
0.8 V to 3.6 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{CC}	≤ 3.0 ns		

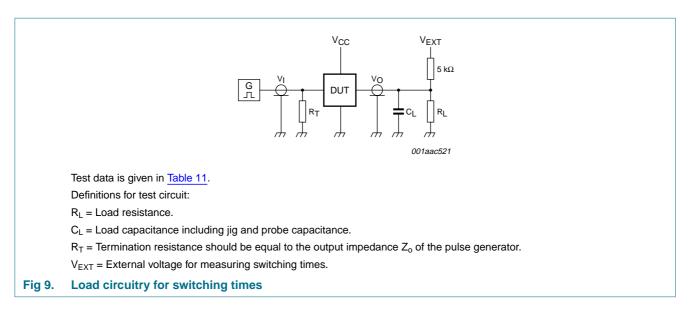


Table 10. Measurement points

Supply voltage	Input	Output	Output					
V _{CC}	V _M	V _M	V _X	V _Y				
0.8 V to 1.6 V	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$	V _{OL} + 0.1 V	V _{OH} – 0.1 V				
1.65 V to 2.7 V	$0.5 \times V_{CC}$	$0.5 imes V_{CC}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V				
3.0 V to 3.6 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.3 V	V _{OH} – 0.3 V				

74AUP1Z125_2 Product data sheet © NXP B.V. 2008. All rights reserved.

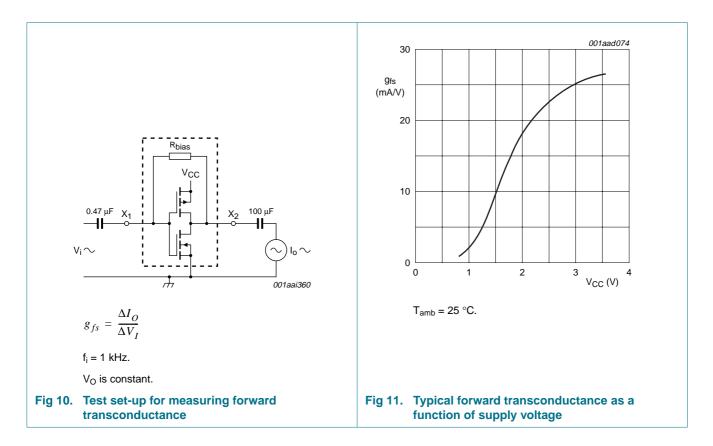
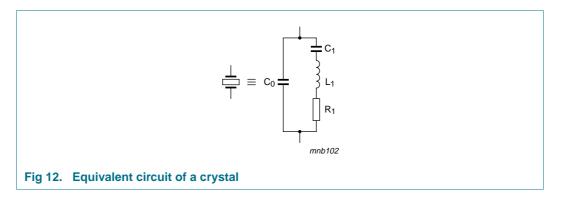

Low-power X-tal driver with enable and internal resistor

Table 11. Test data

Supply voltage	Load	Load		V _{EXT}			
V _{CC}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}		
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open	GND	$2 \times V_{CC}$		

[1] For measuring enable and disable times $R_L = 5 k\Omega$, for measuring propagation delays, setup and hold times and pulse width $R_L = 1 M\Omega$.

Low-power X-tal driver with enable and internal resistor


13. Application information

Crystal controlled oscillator circuits are widely used in clock pulse generators because of their excellent frequency stability and wide operating frequency range. The use of the 74AUP1Z125 provides the additional advantages of low power dissipation, stable operation over a wide range of frequency and temperature and a very small footprint. This application information describes crystal characteristics, design and testing of crystal oscillator circuits based on the 74AUP1Z125.

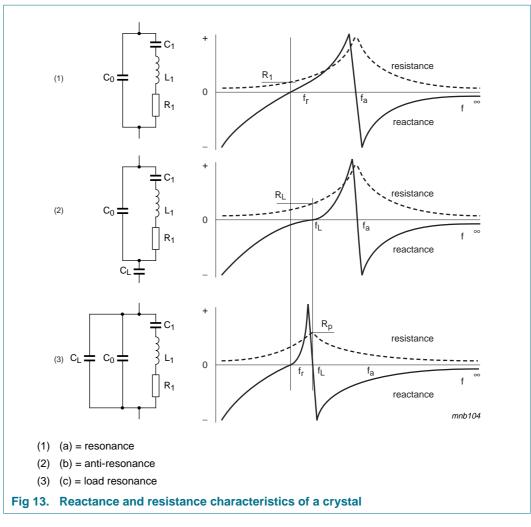

13.1 Crystal characteristics

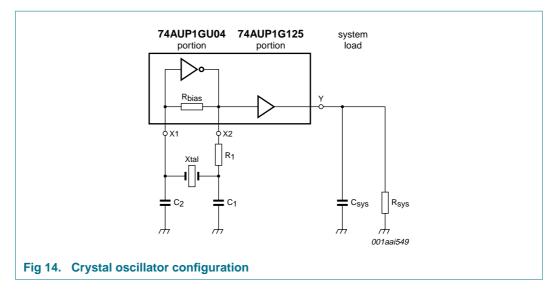
Figure 12 is the equivalent circuit of a quartz crystal.

The reactive and resistive component of the impedance of the crystal alone and the crystal with a series and a parallel capacitance is shown in Figure 13.

Low-power X-tal driver with enable and internal resistor

13.1.1 Design

Figure 14 shows the recommended way to connect a crystal to the 74AUP1Z125. This circuit is basically a Pierce oscillator circuit in which the crystal is operating at its fundamental frequency and is tuned by the parallel load capacitance of C_1 and C_2 . C_1 and C_2 are in series with the crystal. They should be approximately equal. R_1 is the drive-limiting resistor and is set to approximately the same value as the reactance of C_1 at the crystal frequency ($R_1 = X_{C1}$). This will result in an input to the crystal of 50 % of the rail-to-rail output of X2. This keeps the drive level into the crystal within drive specifications (the designer should verify this). Overdriving the crystal can cause damage.


The internal bias resistor provides negative feedback and sets a bias point of the inverter near mid-supply, operating the 74AUP1GU04 in the high gain linear region.

To calculate the values of C_1 and C_2 , the designer can use the formula:

$$C_L = \frac{C_1 \times C_2}{C_1 + C_2} + C_s$$

 C_L is the load capacitance as specified by the crystal manufacturer, C_s is the stray capacitance of the circuit (for the 74AUP1Z125 this is equal to an input capacitance of 1.5 pF).

Low-power X-tal driver with enable and internal resistor

13.1.2 Testing

After the calculations are performed for a particular crystal, the oscillator circuit should be tested. The following simple checks will verify the prototype design of a crystal controlled oscillator circuit. Perform them after laying out the board:

- Test the oscillator over worst-case conditions (lowest supply voltage, worst-case crystal and highest operating temperature). Adding series and parallel resistors can simulate a worse case crystal.
- Insure that the circuit does not oscillate without the crystal.
- Check the frequency stability over a supply range greater than that which is likely to occur during normal operation.
- Check that the start-up time is within system requirements.

As the 74AUP1Z125 isolates the system loading, once the design is optimized, the single layout may work in multiple applications for any given crystal.

74AUP1Z125

Low-power X-tal driver with enable and internal resistor

14. Package outline

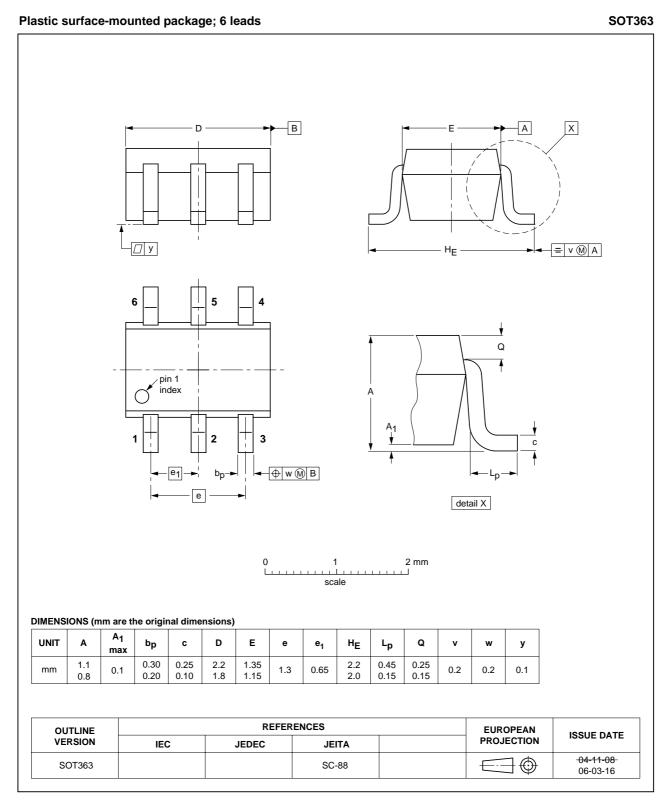


Fig 15. Package outline SOT363 (SC-88)

Low-power X-tal driver with enable and internal resistor

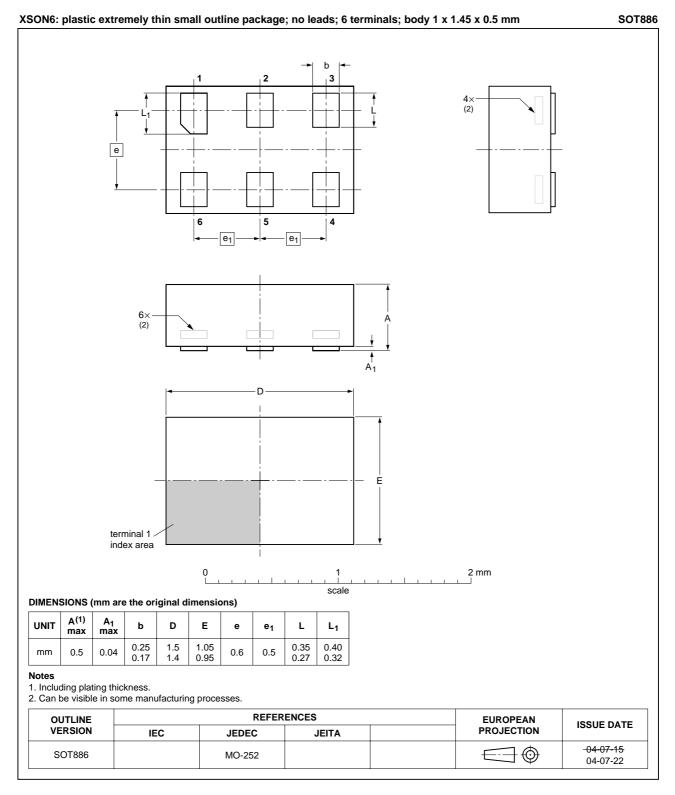
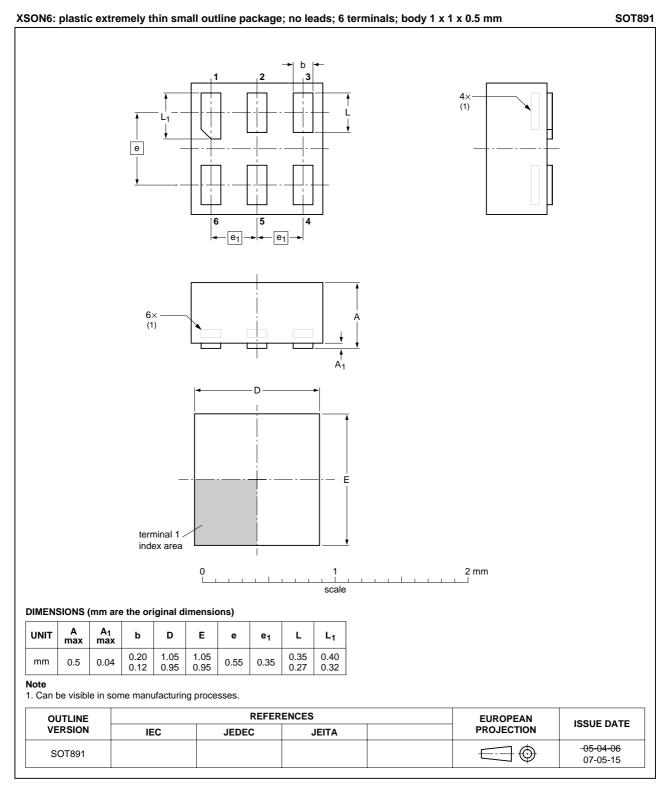



Fig 16. Package outline SOT886 (XSON6)

Low-power X-tal driver with enable and internal resistor

Fig 17. Package outline SOT891 (XSON6)

Low-power X-tal driver with enable and internal resistor

15. Abbreviations

AcronymDescriptionCDMCharged Device ModelCMOSComplementary Metal-Oxide SemiconductorDUTDevice Under TestESDElectroStatic DischargeHBMHuman Body ModelMMMachine Model	Table 12.	Abbreviations
CMOSComplementary Metal-Oxide SemiconductorDUTDevice Under TestESDElectroStatic DischargeHBMHuman Body Model	Acronym	Description
DUT Device Under Test ESD ElectroStatic Discharge HBM Human Body Model	CDM	Charged Device Model
ESD ElectroStatic Discharge HBM Human Body Model	CMOS	Complementary Metal-Oxide Semiconductor
HBM Human Body Model	DUT	Device Under Test
	ESD	ElectroStatic Discharge
MM Machine Model	HBM	Human Body Model
	MM	Machine Model

16. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
74AUP1Z125_2	20080807	Product data sheet	-	74AUP1Z125_1				
Modifications:	 The format on NXP Semicor 	f this data sheet has been rec nductors.	lesigned to comply with the	new identity guidelines of				
	 Legal texts h 	ave been adapted to the new	company name where appro	opriate.				
	Section 2 "Fe	eatures":						
	Removed: Lo	Removed: Low static power consumption; I_{CC} 0.9 μA maximum.						
	Section 10 "Static characteristics":							
	Removed: Fe	eedback current (I _{fbck}).						
	Changed: Ma	aximum supply current (I _{CC}).						
	Added: forwa	ard transconductance and bias	s resistance.					
	Section 11 "I	Dynamic characteristics":						
	Changed: Ty	pical power dissipation capaci	tance.					
74AUP1Z125 1	20060803	Product data sheet	-	-				

Low-power X-tal driver with enable and internal resistor

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

17.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74AUP1Z125

Low-power X-tal driver with enable and internal resistor

19. Contents

1	General description 1	ĺ
2	Features 1	l
3	Ordering information 2	2
4	Marking 2	2
5	Functional diagram 2	2
6	Pinning information 3	3
6.1	Pinning 3	3
6.2	Pin description 3	3
7	Functional description 3	3
8	Limiting values 4	ļ
9	Recommended operating conditions 4	ļ
10	Static characteristics 5	5
11	Dynamic characteristics 14	ļ
12	Waveforms 19)
13	Application information	I
13.1	Crystal characteristics 21	I
13.1.1	Design 22	
13.1.2	Testing 23	
14	Package outline 24	ł
15	Abbreviations 27	1
16	Revision history 27	
17	Legal information 28	3
17.1	Data sheet status 28	
17.2	Definitions	
17.3	Disclaimers	
17.4	Trademarks	
18	Contact information 28	
19	Contents 29)

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 7 August 2008 Document identifier: 74AUP1Z125_2

